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The Problem and Hypothesis 

 The failure of hard disk drives is inevitable, causing one of the most impactful problems 

that businesses can experience today as simple drive recovery can cost up to $7,500 per drive 

(Painchaud, 2018), assuming the data can be recovered. For data centers, keeping multitudes of 

businesses’ data intact for their own operations is crucial. Being able to predict which hard drives 

are at the highest risk of failure based on understanding of combinations of routine diagnostics 

test results is an ideal solution to support the backup and replacement of failing drives before the 

data is lost. Hypothesizing that the study factors, SMART attribute values obtained from daily 

diagnostics recordings, are not statistically significant in predicting failure, this project shows 

that evidence exists to reject the null hypothesis.  

 

The Data Analysis Process 

 The 4th quarter daily data (Backblaze, 2020) of hard drive attributes was combined into a 

single dataset and then loaded into pandas for tidying and analysis, resulting in a dataframe of 

nearly 11 million rows representing hard drive days by 131 columns. 678 of these rows 

represented HDD failures, resulting in an imbalance ratio (Weiss, 2013) of approximately 

16,210:1. The rarity of the positive failure cases was the reason that the entire 4th quarter dataset 

was required. 

 63 redundant columns, representations of the normalized SMART attribute values were 

removed to free memory and space for custom calculations. The 63 SMART attribute raw data 

columns all had NaN values. 10 of the columns had NaN row values exclusively and were 

dropped. The model column was used to determine specific model and the manufacturer of each 

drive. A few thousand rows were removed as a result of error values in important grouping 
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columns like capacity, and a couple hundred rows removed due to representation non-standard 

hard disk drives like RAID array controllers and generic error values for their model. Two 

SMART attribute columns were combined as they represented the same information. 

 The SMART attribute columns with at least 70% of their values available, or less than 

30% NaN values, had their NaN values filled in with summary statistics. The column median 

was used for this interpolation if the graphed distribution of a column showed that the 

distribution was heavily skewed or if it showed that the distribution was bimodal or multimodal. 

The mean was used to fill this subset of NaN values otherwise. A small exception was made for 

a set of 3 Seagate BarraCuda SSD model drives that had 8 columns with NaN values where no 

other models did. For these, the summary statistics to fill in their NaN values were calculated 

from the subset of rows that matched the drive models’ capacity and manufacturer rather than the 

column total. This approach provided simple but more specialized approach to filling the missing 

values for this subset that had a minimal amount missing. 

 The remaining SMART attribute columns were over the threshold of missing values, so 

categorical variables were created to preserve the information that was available. The same rules 

as before were applied to determine whether the mean or median was used to determine class. 

Categorical column class was assigned based on if the row value was NaN, below the column 

summary statistic, or above the column summary statistic. Finally, column correlation was 

checked, and a few columns including model were dropped to avoid collinearity issues in the 

predictive modeling. 

 20 continuous and 11 categorical SMART attribute columns remained along with the 

capacity and manufacturer columns as the set of study factors for analysis. Pearson correlation 

coefficients for the continuous variables and Fisher’s exact tests with Monte Carlo simulation for 
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the categorical variables were calculated. Once these were performed, the categorical columns 

were split into encoding columns and the data was split into 70% training, 20% testing, and 10% 

validation datasets via stratified sampling to preserve the failure class ratio. The continuous 

variables were standardized with scikit-learn’s StandardScaler to ensure proper model training. 

Once the scaler was fitted to the training data, it was used to standardize the testing and 

validation data. 

 PCA was used to transform the continuous variables into their principal components, and 

a scree plot was used along with a cumulative inertia plot to determine that 13 of the 20 

components, 65% of them, made up over 82% of the training dataset inertia. The other 7 

components were dropped from the dataset to speed model training and testing, and to simplify 

the models while losing as little information as possible. Once fitted on the training data, the 

PCA was then used to transform the testing and validation data. Finally, SMOTE was used to 

oversample the training failure instances to a 1:1 ratio so that predictive models could learn to 

predict failure and not only non-failure. 

 Given the study factors significance, 6 predictive models were trained to predict HDD 

failure: An LBFGS solved logistic regression, a best-split decision tree with a maximum depth of 

20, a non-weighted random forest ensemble with a max depth of 20, a class-weighted random 

forest with 1:2 majority:minority weighting with a max depth of 20, and 2 fully connected feed-

forward DNNs, one with a simple architecture and another with a more complex architecture. 

The DNNs used the Binary Cross Entropy Loss, or BCELoss criterion, the Adam algorithm with 

a learning rate of 1e-7 as the optimizer, and the weights initialized with Xavier, or Glorot, 

initialization. 
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The Project Findings 

 The analysis showed that all of the study factors are statistically significant and useful for 

predicting HDD failure before it occurs. Based on the results of the exploratory data analysis and 

the predictive analysis, the SMART attributes 5, 197, and 9 are the best predictors for HDD 

failure. The manufacturer is also very influential when combined with the other data. For 

predictive models, the logistic regression model or the more complex MLP neural network are 

the two best model approaches for attempting to automate a data center’s approach to predicting 

HDD failure before it happens. 

Table 1 

HDD Failure Predictive Model Testing Results 

Model Sensitivity Specificity Precision Error Rate ROC AUC 

Logistic Regression 0.6397 0.9732 1.1478e-3 2.68% 0.8729 

Decision Tree 0.4412 0.9690 0.8829e-3 3.10% 0.6900 

Random Forest 0.3603 0.9903 2.2900e-3 0.98% 0.7974 

Class-Weighted Random 

Forest 
0.4044 0.9717 0.8858e-3 2.83% 0.7998 

Simple DNN 0.6176 0.9185 0.4696e-3 8.15% 0.7681 

Complex DNN 0.7132 0.9364 0.6946e-3 6.36% 0.8248 

 

The Project Limitations 

 A few limitations of this project exist. First, a very large amount of the dataset was made 

up of missing values. A second limitation that deserves caution is that the ratios of drives made 

by each manufacturer in the dataset is very imbalanced. No assumptions about value or 
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reliability of the four manufacturers included in the dataset should be made from this data. A 

third limitation is that the dataset was extremely imbalanced in terms of the minority (failure) 

and majority (non-failure) classes. Though SMOTE succeeded exceptionally well at allowing 

predictive models to learn from the imbalanced data, it does introduce bias as the synthetically 

created instances of the minority classes overrepresent their information in the analysis. Finally, 

working computer memory was a great limitation throughout the project as the dataset is so 

large. This limitation prevented factor analysis of mixed data from being performed and PCA 

had to be selected as the alternative. 

 

Actions Proposed and Expected Benefits 

 It is highly recommended that either the logistic regression model or the more complex 

DNN model is added to the daily HDD diagnostics checks and backup procedure pipeline. The 

complex DNN will successfully flag 71.3% of drives expected to fail that day and the logistic 

regression 64%, allowing for total backup and retirement of the drive before the failure occurs. 

Do note that while more sensitive to detecting failure, the DNN does have a higher false positive 

rate, at 6.36%, than the more conservative logistic regression at 2.68%. Until this can be 

completed, special care should be given to drives with higher values of SMART attributes 5, 

197, and 9 to reduce data loss and complications arising from the events of HDD failure. 

 Once implemented, an ensemble approach between the two should be tested to further 

reduce the false positive rate. Furthermore, additional research is warranted beyond the scope 

and limitations of the project. Taking an RNN approach to the data tidying and predictive 

modeling will almost certainly improve the results quite significantly, as they are specifically 

designed for time-series data such as this. 
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